Chapter-6 Empirical Studies: Results and Revelation

Moumita Gupta, S K Acharya, A Biswas and G C Mishra

Variables	Range		Mean	SD	CV (%)
	Max.	Min.			
1. $Age(X_1)$	74	23	45.31	12.92	28.514
2. Education(X ₂)	3	1	2.04	0.79	38.725
3.Family size(X ₃)	7.00	2	4.68	1.26	26.923
4. Average cost of farm		168.3			
implements when	283.33	3	211.80	25.68	12.124
$purchased(X_4)$					
5. Average cost of farm		373.3			
implements at	485.00	3	425.97	26.89	6.312
$present(X_5)$					
6. Homestead land (X_6)	0.37	0.05	0.16	0.06	37.5
7. Land under agricultural					
$\operatorname{crop}(X_7)$	2.50	0.25	0.93	0.43	46.236
8. Cropping intensity (X_8)	2.90	1.20	2.01	0.32	15.92
9. Land under bamboo (X ₉)	1.50	0.20	0.59	0.21	35.593
10. Material possessed (X_{10})	5.00	3.33	4.19	0.65	15.513
11. Annual income before	153750	5000.	18679.	15949.	
bamboo (X ₁₁)	.00	00	68	25	85.382
12. Mass media exposure					
(X ₁₂)	10.00	3.00	5.60	2.40	42.857

Table 6.1: Descriptive Analysis of the Independent and **Dependent variables**

Empirical Studies: Results and Revelation

13. Number of rhizome	5000.0	1000.	2699.4		
planted (X ₁₃)	0	00	9	848.02	31.414
14. Number of rhizome	4500.0	850.0	2460.0		
grown to the fullest (X_{14})	0	0	7	815.00	33.129
15. Training received(X_{15})	15.00	3.00	9.49	4.12	43.414
16. Energy consumption	12300.	1059.	4668.5	2806.5	
(X_{16})	00	96	0	5	60.116
17. Distance to market(X_{17})	8.00	2.00	5.60	1.53	27.321
18. Cost incurred in bamboo	2640.0	300.0			
cultivation(X ₁₈)	0	0	917.18	354.97	38.702
19. Mode of selling(X_{19})	5.00	3.00	4.02	0.77	19.154
20. Family income from	24425.	3360.	9535.0	3432.6	
bamboo enterprise (Y_1)	00	00	6	9	36
21. Family income from	47500.	1333.	14177.	7318.1	
agricultural	00	33	51	1	51.617
enterprise(Y ₂)					
22. Productivity of bamboo	12762.	1700.	5004.8	1874.7	
(Y ₃)	50	00	0	9	37.459
24. Mandays generated in					
bamboo	45.00	12.85	21.36	7.83	36.657
enterprise(Y ₄)					
25. Wages generated in	6142.5	1735.	2886.5	1053.3	
bamboo enterprise(Y ₅)	0	40	9	8	36.492

Table-6.1.It presents the descriptive analysis on the distribution pattern and distribution nature of different independent and dependent variables.

The distribution pattern of variable $Age(X_1)$ depicts that the minimum age of the respondents is 23 and maximum is 74. Since the respondents belong to farming background and it was pre-decided, this distribution of age is quite natural. The mean age is 45.31 with standard deviation 12.92. The coefficient of variance (CV) is 28.514 per cent which indicates that the distribution pattern of the variable is consistent.

The distribution pattern of variable $Education(X_2)$ shows that the minimum standard of the respondents is 1 which means respondents studied up to class 8 only and the maximum is 3 which mean respondents' level of education is higher secondary. The mean education is 2.04 with S.D of 0.79. The coefficient of variance is 38.25 per cent which indicate distribution of the variables is fairly consistent.

The distribution pattern of variable **Family size** (X_3) depicts that the maximum family size of the respondents is 7 and the minimum is 2. This distribution shows that while some respondents have a small and nuclear family even others are having a joint family. The mean size of the family is 4.68 with standard deviation of 1.26. The coefficient of variance is 26.923 per cent which indicate the distribution of variable is fairly consistent.

The distribution pattern of variable Average cost of farm implements when purchased (X_4) depicts that the maximum average cost of implements is 283.33 and the minimum is 168.33. This distribution shows that due to variation in the time of purchasing of implement different respondents bought the implements at different prices. The mean price is 211.80 with standard deviation of 25.68. The coefficient of variance is 12.124 per cent which indicate the distribution of variable is fairly consistent.

The distribution pattern of variable Average cost of farm implements at **present (X₅)** depicts that the maximum average cost of implements is 485.00 and the minimum is 373.33. This distribution shows the variation in the knowledge of respondents regarding the prevailing price of implement

BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY AND
CULTUREISSN: 978-93-85822-00-188

at market. The mean price is 425.97 with standard deviation of 26.89. The coefficient of variance is 6.312 per cent which indicate the distribution of variable is fairly consistent.

The distribution pattern of variable size of Homestead $land(X_6)$ shows that maximum homestead land is 0.37 Kani while the minimum is only 0.05 Kani. There is a quite narrow

Variation in the land holding of the respondents. This shows that while some respondents have enough land holding not only for a house to stay but also for some vegetable production others just having the only enough space for house only. The mean of the land holding size is 0.16 with a standard deviation of 0.06. The coefficient of variance is 37.5 per cent which indicates that the distribution of variable is quite consistent.

The distribution pattern of variable **land under agricultural crop** (X_7) shows that the maximum land own by the respondent is 2.50 kani while the minimum is 0.25 kani. The mean of own land is 0.93 with a standard deviation of 0.43. The coefficient of variance is 46.236 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **cropping intensity** (X_8) shows that the maximum cropping intensity for different agricultural in the field of respondent is 2.90 while the minimum is 1.20. The mean of cropping intensity is 2.01 with a standard deviation of 0.32. The coefficient of variance is 15.92 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **land under bamboo** (X_9) shows that the maximum land under bamboo owned by the respondent is 1.50 kani while the minimum is 0.20 kani. The mean of cropping land under bamboo is 0.59 with a standard deviation of 0.21. The coefficient of variance is 35.593 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **material possessed** (X_{10}) shows that the maximum material possessed by the respondent is scored as 5.00 while the minimum is 3.33. The mean of material possession is 4.14 with a standard deviation of 0.65. The coefficient of variance is 15.513 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **annual income before bamboo** (X_{11}) shows that the maximum income before bamboo by the respondent is Rs.153750.00 while the minimum is Rs.5000.00. The mean of income is 18679.68 with a standard deviation of 15949.25. The coefficient of variance is 85.382 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **mass media exposure** (X_{12}) shows that the maximum score ranked by the respondent is 10 while the minimum is 3. The mean of exposure is 5.60 with a standard deviation of 2.40. The coefficient of variance is 42.857 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable number of rhizome planted (X_{13}) shows that the maximum rhizome planted by the respondent is 5000.00

BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY AND
CULTUREISSN: 978-93-85822-00-190

while the minimum is 1000.00. The mean of number is 2699.49 with a standard deviation of 848.02. The coefficient of variance is 31.414 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **number of rhizome grew to the fullest** (X_{14}) shows that the maximum number rhizome grew to fullest is 4500.00 while the minimum is 850.00. The mean of number of rhizome is 2460.00 with a standard deviation of 815.00. The coefficient of variance is 33.129 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **training received** (X_{15}) shows that the maximum number of time of training received by the respondent is 15.00 while the minimum is 3.00. The mean of training received is 9.49 with a standard deviation of 4.12. The coefficient of variance is 43.414 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable energy consumption (X_{16}) shows that the maximum investment in energy consumption by the respondent is 12300.00 while the minimum is 1059.96. The mean of consumption is 4668.50 with a standard deviation of 2806.55. The coefficient of variance stands at 60.116 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **distance to market** (X_{17}) shows that the maximum distance for the respondent is 8.00 while the minimum is 2.00. The mean of distance is 5.60 with a standard deviation of 1.53. The

coefficient of variance is 27.321 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **cost incurred in bamboo cultivation** (X_{18}) shows that the maximum cost incurred by the respondent is 2640.00.00 while the minimum is 300.00. The mean of cost is 917.18 with a standard deviation of 354.97. The coefficient of variance is 38.702 per cent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable mode of selling (X19) shows that the maximum score ranked by the respondent according to schedule is 5.00 while the minimum is 3.00. The mean of score is 4.02 with a standard deviation of 0.77. The coefficient of variance is 19.154 percent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable family income from bamboo enterprise (Y_1) shows that the maximum income by the respondent is Rs.24425.00 while the minimum is Rs.3360.00. The mean of income is Rs.9535.06 with a standard deviation of 3432.69. The coefficient of variance is 36 percent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable family income from agricultural enterprise (Y_2) shows that the maximum income by the respondent is Rs.47500.00 while the minimum is Rs.1333.33. The mean of income is Rs.14177.51 with a standard deviation of 7318.11. The coefficient of variance is 51.617 percent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable **productivity of bamboo** (Y_3) shows that the maximum production is 12762.50 while the minimum is 1700.00. The mean of production is 5004.80 with a standard deviation of 1874.79. The coefficient of variance is 37.459 percent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable Mandays generated in bamboo enterprise (Y_4) shows that the maximum Mandays is 45.00 while the minimum is 12.85. The mean of Mandays is 21.36 with a standard deviation of 7.83. The coefficient of variance stands at 36.657 percent which indicates that the distribution of the variable is quite consistent.

The distribution pattern of variable wages generated in bamboo enterprise (Y_5) shows that the maximum wages is Rs.6142.50 while the minimum is Rs.1735.40. The mean of wages is Rs.2886.59 with a standard deviation of 1053.38. The coefficient of variance is 36.492 percent which indicates that the distribution of the variable is quite consistent.

Table 6.2: Co-efficient of correlation between The Family income fromBamboo enterprise (Y1) and other 19 exogenous variable.

EXOGENOUS VARIABLE	DEPENDENT VARIABLE(Y ₁)
1. $Age(X_1)$	0.0855
2. Education(X ₂)	-0.1287
3.Family size(X ₃)	-0.4593**
4. Average cost of farm implements when	-0.1953
$purchased(X_4)$	
5. Average cost of farm implements at	0.0465
present(X ₅)	

6. Homestead land (X ₆)	-0.0154
7. Land under agricultural $crop(X_7)$	0.1999*
8. Cropping intensity (X ₈)	-0.0702
9. Land under bamboo (X ₉)	0.9937**
10. Material possessed (X_{10})	0.0166
11. Annual income before bamboo (X_{11})	0.1448
12. Mass media exposure (X_{12})	-0.0691
13. Number of rhizome planted (X_{13})	0.3055**
14. Number of rhizome grown to the fullest (X_{14})	0.2920**
15. Training received(X_{15})	0.0408
16. Energy consumption (X_{16})	0.1978*
17. Distance to market(X_{17})	0.0439
18. Cost incurred in bamboo cultivation(X_{18})	0.9722**
19. Mode of selling(X_{19})	0.1607
20. Family income from bamboo enterprise(Y_1)	1.0000**
21. Family income from agricultural	0.3751**
enterprise(Y ₂)	
22. Productivity of bamboo (Y ₃)	0.8562**
24. Mandays generated in bamboo enterprise(Y ₄)	0.5221**
25. Wages generated in bamboo enterprise(Y_5)	0.5222**

** Significant at 1% level of significance

* Significant at 5% level of significance.

The Table-6.2 presents the co-efficient of correlation between the Family income from bamboo enterprise (Y_1) and other 19 independent variable.

It has been found that the following variables have been emerged as the significant predictors of income from Bamboo enterprise(Y_1), and these predictor variables are family size(X_3), land Uunder agricultural crop(X_7), land under bamboo(X_9), number of rhizome planted(X_{13}),number of

rhizome grew to the fullest(X_{14}), energy consumption(X_{16}), cost incurred in bamboo cultivation(X_{18}).

Fig. 6.1: Co-efficient of correlation between The Family income from Bamboo enterprise (Y1) and other 19 exogenous variable.

REVEALATION

The variable family size(X3) has been found negatively but significantly correlated to imply that family income from Bamboo enterprise (Y_1) has gone higher for a small size family. Small size family has got relatively less family cost to incur and hence higher level of savings and surplus.

Land under agricultural $crop(X_7)$ and land under $bamboo(X_9)$, on the other hand, have recorded a positive but significant correlation to imply that for the respondents having higher size of land holding, are also generating higher level of income.

Number of rhizome planted(X_{13}) and number of rhizome grew to the fullest(X_{14}) have been found to have positive but significant correlation to imply that for the respondents who planted and retained higher number of rhizome have acquired higher level of income.

Energy consumption(X_{16}) has been emerged as an important economic indicator to estimate the income from family income from Bamboo enterprise (Y_1) of the respondents. This implies that higher degree of energy consumption has gone positively with the income from the bamboo enterprise.

Cost incurred in bamboo cultivation(X_{18}) has recorded to have positive but significant correlation with the family income from Bamboo enterprise (Y_1). Cost is an indicator to decide on and characterize the investment volume. When the cost scrolls up, it sometimes indicate that t income the also increasing.

Table 6.3: Co-efficient of correlation between The family income fromAgricultural enterprise (Y2) and other 19 independent variables.

EXOGENOUS VARIABLE	The family income from agricultural
	enterprise (Y ₂)
1. Age(X_1)	0.1296
2. Education(X ₂)	-0.1569
3. Family size(X ₃)	-0.5528**
4. Average cost of farm implements when	0.0077
purchased(X ₄)	
5. Average cost of farm implements at	
present(X ₅)	0.0123

Empirical Studies: Results and Revelation

6. Homestead land (X ₆)	0.2408*
7. Land under agricultural $crop(X_7)$	0.7779**
8. Cropping intensity (X_8)	-0.2178*
9. Land under bamboo (X ₉)	0.3972**
10. Material possessed (X_{10})	0.1443
11. Annual income before bamboo (X_{11})	0.3559**
12. Mass media exposure (X_{12})	0.0176
13. Number of rhizome planted (X_{13})	-0.0625
14. Number of rhizome grown to the fullest (X_{14})	-0.0424
15. Training received(X_{15})	0.0870
16. Energy consumption (X_{16})	0.4137**
17. Distance to market(X_{17})	0.1865
18. Cost incurred in bamboo cultivation(X_{18})	0.3954**
19. Mode of selling(X_{19})	0.0722
20. Family income from bamboo enterprise(Y_1)	0.3751**
21. Family income from agricultural	
enterprise(Y ₂)	1.000**
22. Productivity of bamboo (Y ₃)	0.3051**
24. Mandays generated in bamboo enterprise(Y_4)	0.6505**
25. Wages generated in bamboo enterprise(Y_5)	0.6558**

** Significant at 1% level of significance

* Significant at 5% level of significance.

The Table-6.3 presents the co-efficient of correlation between the Family income from agricultural enterprise (Y_2) and other 19 independent variable. It has been found that the following variables have been emerged as the significant predictors of income from Agricultural enterprise(Y_2), and these predictor variables are family size(X_3),homestead land(X_6),land under agricultural crop(X_7), land under bamboo(X_9),Annual income before

 $bamboo(X_{11})$, energy consumption(X₁₆), cost incurred in bamboo cultivation(X₁₈).

Fig. 8.2: Co-efficient of correlation between The family income from Agricultural enterprise (Y₂) and other 19 independent variables.

REVEALATION

The variable family size(X_3) have been found negatively but significantly correlated to imply that family income from Agricultural enterprise (Y_2) has gone higher for a small size family. Small size family has got relatively less family cost to incur and hence higher level of savings and surplus.

Homestead $land(X_6)$, Land under agricultural $crop(X_7)$ and land under $bamboo(X_9)$, on the other hand, have recorded a positive but significant correlation to imply that all type of lands are providing the resource support

for the optimum farm operation and the generation of farm income. The size of land acts in the form of a volume of operational resources and hence, can ensure better income and absorb any kind of risk.

Annual income before bamboo (X_{11}) , have been found to have positive but significant correlation with the family income from agricultural enterprise (Y_2) . This is to imply that it has got congenital impact.

Energy consumption(X_{16}) has been emerged as an important economic indicator to estimate the income from family income from Agricultural enterprise (Y_2) of the respondents. This implies that high- energy – agriculture has also been the high yielding crop enterprise. The mechanization vis-a-vis energy intensification has gone positively to generate higher per unit family income from the agricultural enterprise.

Cost incurred in bamboo cultivation(X_{18}) has recorded to have positive but significant correlation with the family income from Agricultural enterprise (Y_2). This implies that respondents those who have given higher investment in bamboo got higher income, and can reinvest this in agricultural enterprise and can get higher income from there too.

Table 6.4: Co-efficient of correlation between Productivity ofBamboo (Y3) and other 19 independent variable.

	Productivity of
EXOGENOUS VARIABLE	Bamboo(Y ₃)
1. $Age(X_1)$	0.1362
2. Education(X ₂)	-0.1503
3. Family size(X ₃)	-0.3588**

4. Average cost of farm implements when	-0.1366
purchased(X_4)	
5. Average cost of farm implements at $present(X_5)$	-0.0329
6. Homestead land (X_6)	-0.0279
7. Land under agricultural $crop(X_7)$	0.2049*
8. Cropping intensity (X ₈)	-0.0049
9. Land under bamboo (X ₉)	0.8619**
10. Material possessed (X_{10})	0.0817
11. Annual income before bamboo (X_{11})	0.0776
12. Mass media exposure (X_{12})	-0.0443
13. Number of rhizome planted (X_{13})	0.2705**
14. Number of rhizome grown to the fullest (X_{14})	0.2629**
15. Training received(X_{15})	0.0110
16. Energy consumption (X_{16})	0.2222*
17. Distance to market(X_{17})	0.1346
18. Cost incurred in bamboo cultivation(X_{18})	0.8489**
19. Mode of selling(X_{19})	0.1404
20. Family income from bamboo enterprise(Y_1)	0.8562**
21. Family income from agricultural enterprise(Y_2)	0.3051**
22. Productivity of bamboo (Y_3)	1.0000**
24. Mandays generated in bamboo enterprise(Y_4)	0.4225**
25. Wages generated in bamboo enterprise(Y_5)	0.4220**

** Significant at 1% level of significance

* Significant at 5% level of significance.

The table-6.4 presents the co-efficient of correlation between Productivity of Bamboo (Y_3) and other 19 independent variable.

It has been found that the following variables have been emerged as the significant predictors of Productivity of $bamboo(Y_3)$, and these predictor variables are family $size(X_3)$,land under agricultural $crop(X_7)$, land under $bamboo(X_9)$, number of rhizome planted(X_{13}),number ofrhizome grew to

the fullest(X_{14}), energy consumption(X_{16}), cost incurred in bamboo cultivation(X_{18}).

Fig. 6. 3: Co-efficient of correlation between Productivity of Bamboo (Y₃) and other 19 independent variable.

REVEALATION

The variable family size(X_3) have been found negatively but significantly correlated to imply that productivity of Bamboo (Y_3) has gone higher for a small size family. Small size family has got relatively less family cost to incur and hence higher level of savings and surplus.

Land under agricultural $crop(X_7)$ and land under $bamboo(X_9)$, on the other hand, have recorded a positive but significant correlation to imply that from

the respondents having higher size of land holding they are getting higher level of production.

Number of rhizome planted(X_{13}) and number of rhizome grew to the fullest(X_{14}) have been found to have positive but significant correlation. Rhizomes are the basic biological inputs for the propagation and production of bamboo. The more the number of rhizomes, nurtured properly the more would be the production of bamboo vis-à-vis income from bamboo.

Energy consumption(X_{16}) have been emerged as an important economic indicator to estimate productivity of Bamboo (Y_3) of the respondents. This implies that higher degree of energy consumption has gone positively with the higher production from bamboo plantation.

Cost incurred in bamboo cultivation(X_{18}) has recorded to have positive but significant correlation with the productivity of Bamboo (Y_3). This implies that respondents those who

Gave proper attention to the plantation and took good care of the plantation got higher level of production from bamboo enterprise.

 Table 6.5: Co-efficient of correlation between the Mandays generation

 from Bamboo enterprise (Y4) and other 19 independent variable.

Exogenous variable	Mandays generated from Bamboo
	enterprise(Y ₄)
1. Age(X_1)	-0.0116
2. Education(X ₂)	-0.0231
3. Family size(X ₃)	-0.9289**
4. Average cost of farm implements when	-0.1467
purchased(X ₄)	

Empirical Studies: Results and Revelation

5. Average cost of farm implements at	
$present(X_5)$	-0.0489
6. Homestead land (X_6)	0.1658
7. Land under agricultural $crop(X_7)$	0.4721**
8. Cropping intensity (X ₈)	0.0260
9. Land under bamboo (X ₉)	0.5329**
10. Material possessed (X_{10})	0.0152
11. Annual income before bamboo (X_{11})	0.2704**
12. Mass media exposure (X_{12})	-0.1876
13. Number of rhizome planted (X_{13})	-0.1239
14. Number of rhizome grown to the fullest (X_{14})	-0.1210
15. Training received(X_{15})	-0.0396
16. Energy consumption (X_{16})	0.5013**
17. Distance to market(X_{17})	0.1167
18. Cost incurred in bamboo cultivation(X_{18})	0.5282**
19. Mode of selling(X_{19})	0.1136
20. Family income from bamboo enterprise(Y_1)	0.5221**
21. Family income from agricultural	
enterprise(Y ₂)	0.6505**
22. Productivity of bamboo (Y ₃)	0.4225**
24. Mandays generated in bamboo $enterprise(Y_4)$	1.0000**
25. Wages generated in bamboo enterprise(Y_5)	0.9992

** Significant at 1% level of significance

* Significant at 5% level of significance.

The Table-6.5 presents the co-efficient of correlation between Mandays generated from Bamboo enterprise (Y_4) and other 19 independent variable. It has been found that the following variables have been emerged as the significant predictors of Mandays generated from bamboo enterprise (Y_4) , and these predictor variables are family size (X_3) , land under agricultural

 $crop(X_7)$, land under bamboo(X₉),Annual income before bamboo(X₁₁), energy consumption(X₁₆), cost incurred in bamboo cultivation(X₁₈).

Fig. 6.4: Co-efficient of correlation between the Mandays generation from Bamboo enterprise (Y₄) and other 19 independent variable.

REVEALATION

The variable family size(X_3) have been found negatively but significantly correlated to imply that Mandays generated from Bamboo enterprise (Y_4) has gone higher for a small size family. Small size family has got relatively less family cost to incur and hence higher level of savings and surplus.

Land under agricultural $crop(X_7)$ and land under $bamboo(X_9)$, on the other hand, have recorded a positive but significant correlation to imply that all type of lands are providing the resource support for the optimum farm

operation and the generation of farm income. The size of land acts in the form of a volume of operational resources and hence can ensure better income and absorb any kind of risk.

Annual income before bamboo (X_{11}) has been found to have positive but significant correlation with Mandays generated from Bamboo enterprise (Y_4) . This is to imply that it has got congenital impact.

Energy consumption(X_{16}) have been emerged as an important economic indicator to estimate the income from Mandays generated from Bamboo enterprise (Y_4) of the respondents. This implies that the mechanization visa-vis energy intensification has gone positively to generate higher per unit Mandays generation from Bamboo enterprise.

Cost incurred in bamboo cultivation(X_{18}) has recorded to have positive but significant correlation with Mandays generated from Bamboo enterprise (Y_4). This implies that respondents those who have invested high amount in bamboo plantation got higher income as well as higher Mandays generated thereafter.

	Wage generation
EXOGENOUS VARIABLE	Irom Bamboo
1. Age(X ₁)	-0.0072
2. Education(X ₂)	-0.0298
3. Family size(X ₃)	-0.9297**
4. Average cost of farm implements when	-0.1476

Table 6.6: Co-efficient of correlation between Wage generation fromBamboo eopnterprise(Y5) and other 19 independent variable.

purchased(X ₄)	
5. Average cost of farm implements at $present(X_5)$	-0.0446
6. Homestead land (X_6)	0.1693
7. Land under agricultural $crop(X_7)$	0.4769**
8. Cropping intensity (X ₈)	0.0235
9. Land under bamboo (X ₉)	0.5328**
10. Material possessed (X_{10})	0.0204
11. Annual income before bamboo (X_{11})	0.2710**
12. Mass media exposure (X_{12})	-0.1863
13. Number of rhizome planted (X_{13})	-0.1242
14. Number of rhizome grown to the fullest (X_{14})	-0.1212
15. Training received(X_{15})	-0.0416
16. Energy consumption (X_{16})	0.4973**
17. Distance to market(X_{17})	0.1219
18. Cost incurred in bamboo cultivation(X_{18})	0.5277**
19. Mode of selling(X_{19})	0.1179
20. Family income from bamboo enterprise(Y_1)	0.5222**
21. Family income from agricultural enterprise(Y_2)	0.6558**
22. Productivity of bamboo (Y ₃)	0.4220**
24. Mandays generated in bamboo enterprise(Y_4)	0.9992**
25. Wages generated in bamboo enterprise(Y_5)	1.0000**

** Significant at 1% level of significance

* Significant at 5% level of significance.

The Table-6.6 presents the co-efficient of correlation between Wage generated from Bamboo enterprise (Y_5) and other 19 independent variable. It has been found that the following variables have been emerged as the significant predictors of Wages generated from Bamboo enterprise(Y_5), and these predictor variables are family size(X_3),land under agricultural crop(X_7), land under bamboo(X_9),Annual income before bamboo(X_{11}), energy consumption(X_{16}), cost incurred in bamboo cultivation(X_{18}).

Fig. 6.5: Co-efficient of correlation between Wage generation from Bamboo enterprise (Y₅) and other 19 independent variable.

REVEALATION

The variable family size(X_3) have been found negatively but significantly correlated to imply that Wages generated from Bamboo enterprise (Y_5) has gone higher for a small size family. Small size family has got relatively less family cost to incur and hence higher level of savings and surplus.

Land under agricultural $\operatorname{crop}(X_7)$ and land under $\operatorname{bamboo}(X_9)$, on the other hand, have recorded a positive but significant correlation to imply that all type of lands are providing the resource support for the optimum farm operation and the generation of farm income. The size of land acts in the form of a volume of operational resources and hence can ensure better income and absorb any kind of risk.

Annual income before bamboo (X_{11}) , have been found to have positive but significant correlation with Wages generated from Bamboo enterprise (Y_5) . This is to imply that it has got congenital impact.

Energy consumption(X_{16}) has been emerged as an important economic indicator to estimate the income from Wages generated from bamboo enterprise (Y_5) of the respondents. This implies that the mechanization visa-vis energy intensification has gone positively to generate higher per unit Wages generation from bamboo enterprise.

Cost incurred in bamboo cultivation(X_{18}) has recorded to have positive but significant correlation with Wages generated from Bamboo enterprise (Y_5). This implies that those respondents who have invested high amount in bamboo plantation got higher income as well as higher Wages also.

Table 6.7: Regression Analysis: Causal Effect of Independent Variableson Family income from Bamboo enterprise (Y1),The consequent Variable.

	β-			SE OF	Т-
CHAR	Value	βΧR	REG	В	VAL
			COFF-B		OF B
1. $Age(X_1)$	0.018	0.154	4.735	5.428	0.872
2. Education(X ₂)	-0.001	0.013	-4.312	92.053	0.047
3. Family size(X ₃)	-0.026	1.228	-72.082	45.894	1.571
4. Average cost of farm					
implements when					
purchased(X ₄)	-0.033	0.649	-4.398	1.757	2.503
5. Average cost of farm					
implements at					
$present(X_5)$	0.003	0.016	0.432	1.563	0.276

6. Homestead land					808.76	
(X_6)		0.014	-0.022	789.249	2	0.976
7. Land under agrie	cultural				129.63	
$crop(X_7)$		-0.026	-0.523	-207.174	5	1.598
8. Cropping intensity					140.06	
(X_8)		-0.020	0.144	-215.212	1	1.537
9. Land under				15181.12	988.62	15.35
bamboo (X ₉)		0.948	95.138	2	3	6
10. Material						
possessed (X_{10})		0.011	0.018	55.922	74.204	0.754
11. Annual income	before					
bamboo (X_{11})		-0.012	-0.172	-0.003	0.003	0.811
12. Mass media ex	posure					
(X_{12})	•	0.001	-0.007	1.357	20.989	0.065
13. Number of r	hizome					
planted (X_{13})		-0.026	-0.810	-0.106	0.312	0.340
14. Number of r	hizome					
grown to the		0.034	1.010	0.144	0.325	0.444
fullest (X ₁₄)						
15. Training received((X ₁₅)	0.002	0.009	1.880	12.989	0.145
16. Energy consu	mption					
(X ₁₆)	-	-0.029	-0.587	-0.036	0.019	1.873
17. Distance to marke	$t(X_{17})$	-0.004	-0.017	-8.337	28.215	0.295
18. Cost incurred in ba	amboo					
$cultivation(X_{18})$		0.038	3.779	0.372	0.569	0.654
19. Mode of						
selling(X ₁₉)		-0.001	-0.020	-5.562	56.938	0.098
Det. Of correlation	matrix	of pre-	dictor =			
0.14133199E-04	-					
Multiple $R - SQ = Multiple$		le R =				
0.9899 0.9950						
F- VALUE FOR R=						
393.37	WITH	19 AND	76 DFS			

R-BAR SQ(ADJUSTED R-SQ)=0.9874

Table-6.7 presents the estimation of cause effect relationship between the Family income from Bamboo enterprise (Y_1) and 19 causal variables. The beta x R presents the Parental contribution of the causal variable on the respective consequent variable in the total interaction. It is interesting to note that the R² value stands at 0.9899 to imply that almost entity of the variance has been explained by this causal variable Land under bamboo(X₉).

Revelation

This is to imply that Land under bamboo has come up as one of the most important causal variable / precisely to infer, one of the most dependable indicator to estimate the income from bamboo enterprise, on the other way those respondents who are progressive in bamboo enterprises, are also owners of diverse and large area under bamboo plantation. Large amount of land under bamboo cultivation can also be the MOV (Means of verification) to estimate their income from bamboo enterprise.

The variable Cost incurred in bamboo cultivation(X_{18}) has ranked the second so far its contribution on the consequent variable is 37 per cent. So, it reveals that cost incurred in bamboo cultivation has become one of the most important indicators to estimate the family income from bamboo enterprises. For the given income from bamboo enterprise it is the cost incurred in bamboo cultivation that impacts (in a discernable manner to) on the income of bamboo enterprise.

Family size(X_3), next to the cost incurred in bamboo cultivation (X_{18}) has contributed in a substantive manner to the income from bamboo. Size of family and the family economy are inversely related and it is further being characterized with its impact on income from bamboo enterprise.

Table 6.7(a): Step down Regression: Causal Effect of independent
Variables on Family income from Bamboo enterprise (Y ₁),
the consequent variable.

		BETA X	REG COEF		
CHAR	BETA	R	- B	SE OF B	T-VAL OF
					В
Average cost	-0.025	0.487	-3.300	1.509	2.187
of farm					
implements					
when					
Purchased					
$(X_4).$					
Land under	0.995	100.017	15939.859	185.368	85.991
bamboo (X ₉)					
Energy	-0.025	-0.054	-0.031	0.014	2.206
consumption					
(X ₁₆)					

Table-6.8 - presents the step down regression analysis to imply that, which are the few variables out of the whole plethora of variables have been retained at the last step (16^{th}) to contribute substantially on the consequent variable that is family income from bamboo enterprise.

The variables X_4 , X_9 , X_{16} has been retained at the sttep 16 to imply that these variables are extremely important causal variable to interpret the re

ason and spectrum of variance of the consequent variable, in its behaviour and performance.

So, the cost of farm implements when purchased (X_4) , land under bamboo(X₉), Energy consumption(X₁₆), ar e the 3 most important causal variable to interpret the variance embedded with the Family in come from Bamboo enterprise(Y₁).

The variables retained at the last and 16th step

Fig. 6.6: Paradigm of step down Regression: Causal Effect of independent Variables on Family income from Bamboo enterprise (Y1), the conseq uent variable.

					Т-
		BETA X		SE OF	VALU
CHAR	BETA	R	REG	B	Ε
			COEF-B		OF B
1. $Age(X_1)$	0.011	0.190	6.065	59.928	0.101
				1016.39	
2. Education(X_2)	-0.131	0.677	-290.300	4	0.286
			-		
3. Family size(X_3)	-0.240	18.166	1392.490	506.739	2.748
4. Average cost of	0.066	0.069	18.668	19.397	0.962
farm					
implements when					
purchased(X ₄)					
5. Average cost of					
farm	-0.022	-0.038	-6.100	17.255	0.354
implements at					
$present(X_5)$					
6. Homestead land				8929.89	
(X_6)	0.039	1.258	4639.908	0	0.520
7. Land under					
agricultural				1431.35	
$crop(X_7)$	0.572	60.975	9755.168	0	6.815
8. Cropping intensity			-	1546.47	
(X_8)	-0.048	1.445	1097.740	8	0.710
9. Land under bamboo			10789.99	10915.8	
(X_9)	0.316	17.194	5	08	0.988
10. Material possessed					
(X ₁₀)	0.073	1.443	826.469	819.315	1.009
11. Annual income					
before bamboo (X ₁₁)	0.067	3.283	0.031	0.034	0.899
12. Mass media exposu	re (X ₁₂)				
0.041	. ,	0.100	126.275	231.748	0.545

Table 6.8: Regression Analysis: Causal Effect of Independent Variableson Family income from Agricultural enterprise (Y2), the consequent
Variable.

13. Number of	0.101	-0.866	0.873	3.448	0.253
rhizome planted					
(X_{13})					
14. Number of					
rhizome grown					
to the fullest (X_{14})	-0.174	1.008	-1.558	3.584	0.435
15. Training					
$received(X_{15})$	0.040	0.479	71.494	143.420	0.498
16. Energy					
consumption (X_{16})	0.013	0.738	0.034	0.212	0.160
17. Distance to					
$market(X_{17})$	0.080	2.033	380.130	311.538	1.220
18. Cost incurred in					
bamboo					
$cultivation(X_{18})$	-0.158	-8.562	-3.259	6.279	0.519
19. Mode of					
selling(X ₁₉)	0.039	0.382	367.975	628.674	0.585
DET. of correlation ma	trix of pi	redictors =	$0.\ \overline{1413319}$	9E -04	

MULTIPLE R-SQ= 0.7300 MULTIPLE R = 0.8544F-VALUE FOR R=10.81 WITH 19 AND 76 DFS R- BAR SQ (ADJUSTED R-SQ) = 0.6625

Table-6.9 presents the estimation of cause effect relationship between the Family income from Agricultural enterprise (Y_2) and 19 causal variables. The beta x R presents the Parental contribution of the causal variable on the respective consequent variable in the total interaction. It is to note that the R^2 value stands at 0.7300.

Revelation

Regression analysis shows that the variable land under agricultural $crop(X_7)$ have got a distinct and discernable causal impact on income from agricultural enterprise. The percentile contribution of this variable on Y_2 i.e.; the family income from agricultural enterprise, has been elicited to the BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY AND CULTURE ISSN: 978-93-85822-00-1 114

tune of 60.97 per cent. It reflects that this variable has got a substantive causal contribution to the performance of consequent variable.

Family size(X_3) has ranked 2nd so far its contribution on the consequent variable is18.16 per cent.Size of family and the family economy are inversely related and it is further being characterized with its impact on income from Agricultural enterprise.

The variable Cost incurred in bamboo cultivation(X_{18}) has contributed 8.5 per cent to the consequent variable. So, it reveals that the cost incurred in bamboo cultivation has become one of the most important indicators to estimate the family income from agricultural enterprises.

Table 6.8(a): Step down Regression: Causal Effect of independent Variables on Family income from Agricultural enterprise (Y₂), the consequent variable.

		BETA X	REG		
CHAR	BETA	R	COEF	SE OF B	T – VAL
			-B		OF B
Family	-0.243	19.146	-1402.976	393.489	3.581
size(X ₃)					
Land under	0.657	72.883	11194.152	1049.581	10.665
Agricultural					
$\operatorname{crop}(X_7)$					
Land under					
bamboo (X ₉)	0.141	7.971	4802.129	2201.372	2.181

Table 6.10 - presents the step down regression analysis to imply that, which are the few variables out of the whole plethora of variables have been retained at the last step (16^{th}) to contribute substantially on the consequent variable that is family income from Agricultural enterprise.

```
BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY AND<br/>CULTUREISSN: 978-93-85822-00-1115
```

The variables X_3 , X_7 , X_9 has been retained at the step 16 to imply that these variables are extremely important causal variable to interpret the reason and spectrum of variance of the consequent variable, in its behaviour and performance.

So, family size (X3), land under agricultural crop(X7), land u nder bamboo(X₉), are the 3 most important caus al variables to interpret the variance embeddeed with the Family income Agricultural enterpris e (Y2), the consequent variable.

Fig. 6.7: Paradigm of step down regression: Causal Effect of independent Variables on Family income from Agricultural enterprise (Y₂), the con sequent variable.

	BET	BET		SE OF	T –
CHAR	Α	Α	REG	В	VAL
			COEF		
		XR	_		OF B
			B		
		1.43			
1. Age(X_1)	0.081	0	11.789	14.065	0.838
		-			
		0.29		238.53	
2. Education(X ₂)	0.015	7	36.081	7	0.151
		-			
		2.69		118.92	
3. Family size(X ₃)	0.058	7	86.476	7	0.727
		-			
4. Average cost of farm		0.35			
implements when	0.020	6	1.473	4.552	0.324
purchased(X ₄)					
5. Average cost of farm	-	0.32			
implements at	0.077	8	-5.365	4.050	1.325
present(X ₅)					
	-	0.12		2095.7	
6. Homestead land (X ₆)	0.034	4	-	54	0.500
			1047.7		
			49		
7. Land under agricultural		0.81	133.92	335.92	
crop(X ₇)	0.031	3	5	3	0.399
		-			
		0.02	252.44	362.94	
8. Cropping intensity (X ₈)	0.043	7	7	3	0.696
		80.3	6306.0	2561.8	
9. Land under bamboo (X ₉)	0.721	32	94	29	2.462
		0.51	142.20	192.28	
10. Material possessed (X_{10})	0.049	8	1	5	0.740

Table 6.9: Regression Analysis: Causal Effect of Independent Variableson Productivity of Bamboo (Y3), The consequent Variable.

		-			
11. Annual income before	-	0.14			
bamboo (X ₁₁)	0.014	4	-0.002	0.008	0.209
	-	0.05			
12. Mass media exposure (X_{12})	0.010	6	-7.623	54.389	0.140
		-			
13. Number of rhizome planted	-	3.68			
(X_{13})	0.105	3	-0.233	0.809	0.288
14. Number of rhizome		4.51			
grown to the fullest (X ₁₄)	0.133	9	0.306	0.841	0.364
		-			
	-	0.04	-		
15. Training received(X_{15})	0.031	4	13.993	33.659	0.416
		0.14			
16. Energy consumption (X_{16})	0.005	5	0.003	0.050	0.068
		1.51	106.74		
17. Distance to market(X_{17})	0.087	8	9	73.115	1.460
		17.0			
18. Cost incurred in bamboo	0.156	88	0.822	1.474	0.558
cultivation(X ₁₈)					
		0.37		147.54	
19. Mode of selling(X_{19})	0.021	8	50.846	3	0.345
DET. of correlation matrix	ctors =				
0.14133199E-04					
MULTIPLE R-SQ= 0.7734 MU					
0.8794					

F-VALUE FOR R = 13.65 WITH 19AND 76 DFS R-BAR SQ (ADJUSTED R-SQ)= 0.7167

Table-6.11 presents the estimation of cause effect relationship between the Productivity of Bamboo (Y_3) and 19 causal variables. The beta x R presents the Parental contribution of the causal variable on the respective consequent variable in the total interaction. It is to note that the R² value stands at 0.7734.

Revelation

Regression analysis shows that the variable land under bamboo(X₉) extracted here with as to have higher operating proficiency to characterize the greater behavior of causal variable productivity of bamboo. It implies that land under bamboo is an important variable for generating higher production in bamboo enterprise. The percentile contribution of this variable on Y_3 i.e; productivity of bamboo has been elicited to the tune of 80.33 per cent. It reflects that this variable has got a substantive causal contribution to the performance of consequent variable.

The variable cost incurred in bamboo cultivation(X18) has contributed 17.08 percent and followed by this; the variable Number of rhizome grew to the fullest(X14) has contributed 4.5 per cent in the causal variable Productivity of Bamboo (Y3). It implies that as high as number of rhizome grew to the fullest and as optimum as investment done during the plantation the productivity will be as high.

Table 6.9(a): Step down Regression: Causal Effect of independent Variables on Productivity of Bamboo (Y₃), the consequent variable.

		BETA X			T-VAL
CHAR	BETA	R	REG	SE OF B	OF
			COEF – B		В
Land under	0.862	100.000	7539.606	457.585	16.477
bamboo(X ₉)					

Table-6.12 presents the step down regression analysis to imply that, which are the few variables out of the whole plethora of variables have been

retained at the last step (18^{th}) to contribute substantially on the consequent variable that is Productivity of Bamboo (Y₃).

The variable X_9 has been retained at the step 18 to imply that this variable is extremely important causal variable to interpret the reason and spectrum of variance of the consequent variable, in its behaviour and performance. So, land under bamboo(X_9), is the most important causal variables to interpret the variance embedded with the Productivity of Bamboo (Y3).

Fig. 6.8: Paradigm of step down regression: Causal Effec t of independent Variables on Productivity of Bamboo (Y₃), the consequent variable.

Table 6.10: Regression Analysis: Causal Effect of IndependentVariables on Mandays generated from Bamboo

	BET				
CHAR	Α	BETA	REG	SE	Т
			COE		
		XR	F	OF B	VAL
			– B		OF B
1. $Age(X_1)$	0.068	-0.085	0.041	0.034	1.215
2. Education(X ₂)	0.015	-0.037	0.146	0.575	0.254
3. Family size(X ₃)	-0.767	77.097	-4.767	0.287	16.633
4. Average cost of farm	-0.062	0.988	-0.019	0.011	1.732
implements when					
purchased(X ₄)					
5. Average cost of farm	0.021	-0.113	0.006	0.010	0.636
implements at					
present(X ₅)					
6. Homestead land (X ₆)	0.061	1.092	7.764	5.050	1.537
7. Land under agricultural					
crop(X ₇)	0.087	4.448	1.589	0.809	1.964
8. Cropping intensity (X ₈)	0.051	0.144	1.239	0.875	1.416
9. Land under bamboo (X ₉)	-0.124	-7.138	-4.525	6.173	0.733
10. Material possessed (X_{10})	-0.091	-0.149	-1.099	0.463	2.372
11. Annual income before					
bamboo (X ₁₁)	-0.002	-0.047	0.000	0.000	0.041
12. Mass media exposure (X_{12})	0.023	-0.473	0.076	0.131	0.581
13. Number of rhizome planted					
(X ₁₃)	-0.042	0.562	0.000	0.002	0.199
14. Number of rhizome grown					
to the fullest (X ₁₄)	0.012	-0.152	0.000	0.002	0.055
15. Training received(X_{15})	0.005	-0.021	0.009	0.081	0.116
16. Energy consumption (X₁₆)	0.177	9.573	0.000	0.000	4.114
17. Distance to market(X_{17})	-0.001	-0.008	-0.003	0.176	0.019
18. Cost incurred in bamboo					
cultivation(X ₁₈)	0.247	14.132	0.005	0.004	1.537

enterprise (Y₄), the consequent Variable.

19. Mode of $selling(X_{19})$	0.015	0.188	0.156	0.356	0.438
DET. of correlation matrix of	0.1413	3199E-			
Predictors =	04				
MULTIPLE R-SQ=	0.9246				
MULTIPLE $R = 0.9616$					
F-VALUE FOR $R = 49.04$	WITH				
19AND 76 DFS					
R-BAR SQ (ADJUSTED R-SQ)					
= 0.9057					

Table-6.13 presents the estimation of cause effect relationship between the Mandays generated from Bamboo enterprise (Y_4) and 19 causal variables. The beta x R presents the Parental contribution of the causal variable on the respective consequent variable in the total interaction. It is interesting to note that the R² value stands at 0.9246 to imply that almost entity of the variance has been explained by this causal variable Family size(X₃).

Revelation

This implies that the variable family size(X_3) extracted here with as to have higher operating proficiency to characterize the greater behavior of causal variable Mandays generation from bamboo enterprise. While family size presents both stress and motivation to go for labour intensive work in individual to elicit a better choice out of basket of commodity to support the family and earn better social status for the family. The percentile contribution of this variable in the causal variable is 77.09 per cent.

Cost incurred in bamboo cultivation(X_{18}) has ranked the second so far its contribution on the consequent variable is 14.13 per cent. It has its impact on Mandays generation in a discernable manner.

BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY ANDCULTUREISSN: 978-93-85822-00-1122

Energy consumption (X16) next to cost incurred in bamboo cultivation (X₁₈) has contributed in a substantive manner in the consequent variable Mandays generated from Bamboo enterprise (Y₄). It implies that those who have received higher Mandays also invest more in energy consumption. Table-6.14 presents the step down regression analysis to imply that, which are the few variable out of the whole plethora of variables have been retained at the last step (13th) to contribute substantially on the consequent variable that is Mandays generated from Bamboo enterprise.

Table 6.10(a): Step down Regression: Causal Effect of independentVariables on Mandays generated from Bamboo enterprise (Y4), the
consequent variable

		BETA X			T-VAL
CHAR	BETA	R	REG	SE OF B	OF
			COEF -B		В
3	-0.755	76.640	-4.688	0.243	19.294
7	0.129	6.655	2.353	0.674	3.491
8	0.069	0.195	1.661	0.814	2.042
10	-0.086	-0.143	-1.043	0.434	2.404
16	0.165	9.027	0.000	0.000	4.171
18	0.0132	7.626	0.003	0.001	3.793

The variables X_3 , X_7 , X_8 , X_{10} , X_{16} , X_{18} has been retained at the step 16 to imply that these variables are extremely important causal variable to interpret the reason and spectrum of variance of the consequent variable, in its behaviour and performance.

So, Family size (X_3) , Land under agricultural crop (X_7) ,Cro pping intensity (X_8) , Material possessed (X_{10}) , Energy consumption (X_{16}) , Cost incurred in bamboo cultivation (X_{18}) are the 6 most important causal variable to interpret the variance embedded with the Mandays generated from bamboo enterprise.

Fig. 6.9: Paradigm of step down regression: Causal Effect of independent Variables on Mandays generated from Bamboo enterprise (Y₄), the consequent variable.

CH	AR	BETA	BETA	REG	SE	Т-
			XR	COEF -	OF B	VAL
				В		OF B
1. A	$ge(X_1)$	0.067	-0.053	5.494	4.535	1.212
	• • • •					
2. E	ducation(X ₂)	0.009	-0.029	11.844	76.906	0.154
			77.58			
3. F	amily size(X ₃)	-0.772	9	-645.274	38.343	16.829
4.	Average cost of farm					
imp	lements when	-0.062	0.986	-2.536	1.468	1.728
purc	$chased(X_4)$					
5.	Average cost of farm					
imp	lements at	0.024	-0.116	0.943	1.306	0.722
pres	$ent(X_5)$					
				1090.07	675.68	
6. H	lomestead land (X ₆)	0.064	1.163	4	5	1.613
7.	Land under agricultural				108.30	
crop	$\mathcal{D}(X_7)$	0.091	4.669	222.319	4	2.053
					117.01	
8. C	ropping intensity (X ₈)	0.047	0.119	153.293	5	1.310
					825.95	
9.La	and under bamboo (X ₉)	-0.114	-6.573	-561.099	1	0.679
10.	Material possessed (X_{10})	-0.080	-0.176	-130.190	61.994	2.100
	Annual income before					
11.	bamboo (X ₁₁)	-0.001	-0.041	0.000	0.003	0.036
	Mass media exposure					
12.	(X ₁₂)	0.023	-0.472	10.296	17.535	0.587
	Number of rhizome					
13.	planted (X_{13})	-0.039	0.530	-0.049	0.261	0.188

Table 6.11: Regression Analysis: Causal Effect of IndependentVariables on Wages generated from bamboo enterprise (Y5),
The consequent Variable.

Moumita Gupta, S K Acharya, A Bi	Biswas and G C Mishra
----------------------------------	-----------------------

					-	
	Number of rhizome					
14.	grown to the	0.010	-0.126	0.012	0.271	0.046
fulle	est (X_{14})					
15.	Training received(X_{15})	0.002	-0.008	0.457	10.852	0.042
	Energy consumption					
16.	(X ₁₆)	0.164	8.831	0.062	0.016	3.850
17.I	Distance to market(X_{17})	0.005	0.066	3.443	23.573	0.146
			13.39			
18.0	Cost incurred in bamboo	0.235	6	0.697	0.475	1.467
cult	ivation(X ₁₈)					
19.	Mode of $selling(X_{19})$	0.019	0.244	26.308	47.569	0.553

DET. of correlation matrix of Predictors = 0.14133199E-04 MULTIPLE R-SQ= 0.9254 MULTIPLE R = 0.9620 F-VALUE FOR R = 49.61 WITH 19AND 76 DFS R-BAR SQ(ADJUSTED R-SQ)= 0.9067

Table-6.15 presents the estimation of cause effect relationship between the Wages generated from Bamboo enterprise (Y_5) and 19 causal variables. The beta x R presents the Parental contribution of the causal variable on the respective consequent variable in the total interaction. It is interesting to note that the R² value stands at 0.9254 to imply that almost entity of the variance has been explained by this causal variable Family size(X₃).

Revelation

This implies that the variable family $size(X_3)$ extracted here with as to have higher operating proficiency to characterize the greater behavior of causal variable Wages generation from bamboo enterprise. While family size presents both stress and motivation to go for labour intensive work in individual to elicit a better choice out of basket of commodity to support the

family and earn better social status for the family. The percentile contribution of this variable in the causal variable is 77.58 per cent.

Cost incurred in bamboo cultivation(X18) has ranked the second so far its contribution on the consequent variable is 13.39 per cent. It has its impact on Wages generation in a discernable manner.

Energy consumption (X_{16}) next to cost incurred in bamboo cultivation (X_{18}) has contributed in a substantive manner in the causal variable Wages generated from Bamboo enterprise (Y_5) . It implies that those who have received higher wages also invest more in energy consumption.

Table 6.11(a): Step down Regression: Causal Effect of independentVariables on Wages generated from bamboo enterprise (Y5), the
consequent variable.

		BETA X			T-VAL
CHAR	BETA	R	REG	SE OF B	OF
			COEF –B		В
1	0.066	-0.052	5.343	2.631	2.031
3	-0.802	81.772	-670.117	32.433	20.662
7	0.0996	5.040	236.487	87.638	2.698
16	0.118	6.418	0.044	0.013	3.324
18	0.118	6.823	0.350	0.105	3.341

Table-6.16 presents the step down regression analysis to imply that, which are the few variables out of the whole plethora of variables have been retained at the last step (14^{th}) to contribute substantially on the consequent variable that is Wages generated from bamboo enterprise.

The variables X_{1} , X_{3} , X_{7} , X_{16} , X_{18} has been retained at the step 16 to imply that these variables are extremely important causal variable to interpret the reason and spectrum of variance of the consequent variable, in its behaviour and performance.

So, Age(X₁),Family size (X₃), Land under agricultural crop(X₇), Energy consumption(X₁₆), Cost incurred in bamboo cultivation(X₁₈)are the 6 most important causal variable to interpret the variance embedded with the wages generated from bamboo enterprise.

Table 6.12: PATH ANALYSIS: Family income fromBamboo enterprise (Y1) and Other 19 exogenous variables

	TOTA			
VARIABLE	L	TOTAL	TOTAL	HIGHEST
	EFFE			
	CT(r)	DIRECT	INDIRECT	INDIRECT
		EFFECT(EFFECT(r-	EFFECT
		TDE)	TDE)	VIA
1. $Age(X_1)$	0.0855	0.0178	0.0677	0.747
	-			
2. Education(X ₂)	0.1287	-0.0010	-0.1277	-0.1144
	-			
3. Family size(X ₃)	0.4593	-0.0265	-0.4328	-0.4394
4. Average cost of	-			
farm	0.1953	-0.0329	-0.1624	-0.1613
implements when				
purchased(X ₄)				
5. Average cost of				
farm	0.0465	0.0034	0.0431	0.0413
implements at				
$present(X_5)$				
6.Homestead land	-			
(X_6)	0.0154	0.0141	-0.0295	-0.0149
7. Land under				
agricultural	0.1999	-0.0259	0.2258	0.2080
$\operatorname{crop}(X_7)$				
8. Cropping intensity	-			
(X_8)	0.0702	-0.0202	-0.05	-0.0594
9. Land under				
bamboo (X9)	0.9937	0.9478	0.0459	0.9478
Material				
10. possessed (X_{10})	0.0166	0.0105	0.0061	0.0206

	Annual income				
11.	before	0.1448	-0.0117	0.1565	0.1469
bam	$boo(X_{11})$				
	Mass media	-			
12.	exposure	0.0691	0.0009	-0.07	0.2845
(X_{12})	2)				
	Number of				
13.	rhizome	0.3055	-0.0262	0.3317	0.2722
plan	nted (X_{13})				
	Number of				
14.	rhizome	0.2920	0.0342	0.2578	O.2722
grov	wn to the fullest				
(X_{14})	4)				
	Training				
15.	$received(X_{15})$	0.0408	0.0023	0.0379	0.0371
	Energy				
	consumption				
16.	(X_{16})	0.1978	-0.0294	0.2272	0.2136
17.I	Distance to				
mar	$ket(X_{17})$	0.0439	-0.0037	0.0476	0.0459
18.0	Cost incurred in				
ban	nboo	0.9722	0.0385	0.9348	0.9261
cult	tivation(X ₁₈)				
10	Mode of	0.1.00-	0.0010	0.1.610	0.1.402
19.	selling(X_{19})	0.1607	-0.0012	0.1619	0.1483

Residual effect = 0.0101

Table-6.17 presents the path analysis for decomposing the total effect(r) of the antecedent variables into direct, indirect and residual effect on the consequent variable, Family income from bamboo enterprise (Y_1) .

REVELATION: It has been found that the variable land under bamboo(X_9) has exerted the highest direct effect to characterize the income from bamboo. It is well discernable that the land size of the bamboo orchard is extremely proportionate with its income generating capacity.

The variable cost incurred in bamboo cultivation(X_{18}) has also been exerted the highest indirect effect to imply that this variable has got highest associational property to characterize the income from bamboo enterprise.

Again, it has been found that the variable land under $bamboo(X_9)$ has routed highest indirect effect of all the variables to ultimately functionalize the performance of income from bamboo enterprise. This indicates the behavioural as well as operational viscosity of this variable income from bamboo enterprise. The value of the residual effect indicates that with the combination of these 19 variables, more than 98 per cent variance of family income from bamboo enterprise (Y₁) has been explained.

Fig. 6.11: Paradigm of path analysis of causal variable Family income from Bamboo enterprise (Y₁) vs. other 19 exogenous variables.

Table 6.13: PATH ANALYSIS: Family income from Agricultural
enterprise (Y ₂) and other 19 variable.

VARIABLE	TOTAL EFFECT (r)	TOTAL DIRECT	TOTAL INDIREC T	HIGHEST
		EFFECT (TDE)	EFFECT (r-TDE)	INDIREC T EFFECT
		(102)		VIA
1. Age(X ₁)	0.1296	0.0107	0.1189	0.0776
2. Education(X ₂)	-0.1569	-0.0315	0.1254	-0.0721
3. Family size(X ₃)	-0.5528	-0.2399	-0.3129	-0.2399

4 4	4 C				
4. AV	erage cost of				
farm	implements	0.0077	0.0655	0.0550	0.0655
wher	h purchased(X_4)	0.0077	0.0655	-0.0578	0.0655
5. Av	erage cost of				
farm	implements at	0.0100			0.0011
prese	ent(X ₅)	0.0123	-0.0224	0.0347	0.0311
6. Ho	omestead land				
(\mathbf{X}_6)		0.2408	0.0389	0.2019	0.1477
7. La	ind under				
agric	cultural				
crop	(X ₇)	0.7779	0.5722	0.2057	0.5722
8. Cr	opping				
inten	sity (X ₈)	-0.2178	-0.0484	-0.1694	-0.1735
9. La	ind under				
bam	boo (X ₉)	0.3972	0.3160	0.0812	0.3160
	Material				
10.	possessed (X ₁₀)	0.1443	0.0730	0.0713	0.0749
	Annual income				
	before bamboo				
11.	(X ₁₁)	0.3559	0.0673	0.2886	0.21699
	Mass media				
12.	exposure (X ₁₂)	0.0176	0.0414	-0.0238	-0.0515
	Number of				
	rhizome				
13.	planted (X ₁₃)	-0.0625	0.1012	-0.1637	0.1012
	Number of				
	rhizome grown				
	to the fullest				
14.	(X ₁₄)	-0.0424	-0.1736	0.216	0.0994
	Training				
15.	received(X15)	0.0870	0.0402	0.0468	0.0402
	Energy		-		-
	consumption				
16.	(X ₁₆)	0.4137	0.0130	0.4007	0.2153
1'	7. Distance to	-			
	market(X ₁₇)	0.1865	0.0796	0.1069	0.0903

18. C	Cost incurred in bamboo ltivation(X ₁₈)	0.3954	0.1581	0.2373	0.3087
19.	Mode of selling(X ₁₉)	0.0722	0.0386	0.0336	0.0494
<u> </u>	selling(A ₁₉)	0.0/22	0.0386	0.0336	

Residual effect=0.2700

Table-6.18 presents the path analysis for decomposing the total effect(r) of the antecedent variables into direct, indirect and residual effect on the consequent variable, Family income from bamboo enterprise (Y_1) .

REVELATION: It has been found that the variable land under agricultural $\operatorname{crop}(X_7)$ has exerted the highest direct effect to characterize the income from agricultural enterprise. It is well discernable that the land size of the agricultural crop is extremely proportionate with its income generating capacity.

The variable Energy consumption(X_{16}) has also been exerted the highest indirect effect to imply that this variable has got highest associational property to characterize the income from agricultural enterprise.

Again, it has been found that the variable land under agricultural $crop(X_7)$ has routed highest indirect effect of all the variables to ultimately functionalize the performance of income from agricultural enterprise. This indicates the behavioural as well as operational viscosity of this variable income from agricultural enterprise. The value of the residual effect indicates that with the combination of these 19 variables, more than 98 per cent variance of family income from agricultural enterprise (Y₂) has been explained.

Fig. 6.12: Paradigm of path analysis of causal variable Family income from Agricultural enterprise (Y₂) vs. other 19 exogenous variables.

Table 6.14:	PATH	ANALY	SIS:	Productivity	of

Bamboo	(Y ₃) and	d other	19 ex	ogenous	variables
--------	-----------------------	---------	-------	---------	-----------

VARIABLE	TOTAL	TOTAL	TOTAL	HIGHEST INDIRECT
	EFFECT		INDIREC	EFFECT
	(r)	DIRECT	Т	VIA
		EFFECT	EFFECT	
		(TDE)	(r-TDE)	
1. $Age(X_1)$	0.1362	0.0812	0.055	0.0812
2. Education(X_2)	-0.1503	0.0153	-0.1656	-0.0870
3. Family size(X_3)	-0.3588	0.0582	-0.417	-0.3342

implemente when				
$\frac{1}{2}$	0.1266	0.0202	0 1569	0 1227
$purchased(X_4)$	-0.1300	0.0202	-0.1508	-0.1227
implements at	0.0220	0.0770	0.0441	0.0770
$\frac{\text{present}(X_5)}{(X_5)}$	-0.0329	-0.0770	0.0441	-0.0770
6. Homestead land	0.0050	0.0040	0.0.500	0.0242
(X_6)	-0.0279	-0.0343	0.0622	-0.0343
7. Land under				
agricultural crop(X ₇)	0.2049	0.0307	0.1742	0.1582
8. Cropping intensity				
(X_8)	-0.0049	0.0435	-0.0484	-0.0452
9. Land under				
bamboo (X9)	0.8619	0.7209	0.141	0.7209
10. Material				
possessed (X ₁₀)	0.0817	0.0490	0.0327	0.0490
11. Annual income				
before bamboo (X ₁₁)	0.0776	-0.0143	0.0919	0.1117
12. Mass media				
exposure (X_{12})	-0.0443	-0.0098	-0.0345	-0.0513
planted (X_{13})	0.2705	-0.1053	0.3758	0.2164
14. Number of				
rhizome grown				
to the fullest (X_{14})	0.2629	0.1329	0.13	0.2080
15. Training				
received(X ₁₅)	0.0110	-0.0307	0.0417	-0.0307
16. Energy		0.0207		
consumption (X_{1c})	0.2222	0.0051	0.2171	0.1624
17 Distance to		0.0001	0.2171	0.1021
market(X_{17})	0 1346	0.0872	0 0474	0.0872
18 Cost incurred in	0.1540	0.0072	0.017	0.0072
hamhaacultivatian				
	0 8/80	0 1557	0.6030	0 70/3
$\frac{(\Lambda_{18})}{10} Mode of$	0.0407	0.1337	0.0757	0.7043
$19. \text{WOULD OI} \\ \text{colling}(\mathbf{V}_{ij})$	0 1 4 0 4	0.0208	0 1106	0.1128
$schnig(\Lambda_{19})$	0.1404	0.0208	0.1190	0.1120

Residual effect= 0.2266

BAMBOO I	N NORTH-EAST INDIA: THE ECOLOGY, ECONOMY	AND
CULTURE	ISSN: 978-93-85822-00-1	136

Table-6.19 presents the path analysis for decomposing the total effect(r) of the antecedent variables into direct, indirect and residual effect on the consequent variable, Productivity of bamboo (Y_3).

REVELATION

It has been found that the variable land under $bamboo(X_9)$ has exerted the highest direct effect to characterize the productivity of bamboo. It is well discernable that the land size of the bamboo orchard is extremely proportionate with its production capacity.

The variable Cost incurred in bamboo cultivation(X_{18}) has also been exerted the highest indirect effect to imply that this variable has got highest associational property to characterize the productivity of bamboo.

Again, it has been found that the variable land under $bamboo(X_9)$ has routed highest indirect effect of all the variables to ultimately functionalize the performance of productivity of bamboo. This indicates the behavioural as well as operational viscosity of this variable productivity of bamboo. The value of the residual effect indicates that with the combination of these 19 variables, more than 98 per cent variance of productivity of bamboo (Y₃) has been explained.

Fig. 6.13: Paradigm of path analysis of causal variable Productivity of Bamboo (Y₃) vs. other 19 exogenous variables.

Table 6.15: PATH ANALYSIS: Mandays generated from Bambooenterprise (Y4) and other 19 exogenous variables.

		TOTAL		TOTAL	
		EFFECT	TOTAL	INDIREC	
	VARIABLE	(r)	DIRECT	Т	HIGHEST
					INDIREC
			EFFECT	EFFECT(r	Т
			(TDE)	-TDE)	EFFECT
					VIA
1.	$Age(X_1)$	-0.0116	0.0680	-0.0796	-0.0871

Empirical Studies: Results and Revelation

2. Education (X_2)	-0.0231	0.0148	-0.0379	-0.0545
3. Family size(X ₃)	-0.9289	-0.7674	-0.1615	-0.7674
4. Average cost of	-0.1476	-0.0623	-0.0844	-0.0891
farm implements				
when purchased(X_4)				
5. Average cost of	-0.0489	-0.0213	-0.0702	-0.0668
farm implements at				
$present(X_5)$				
6. Homestead land				
(X_6)	0.1658	0.0609	0.1049	0.0687
7. Land under				
agricultural $crop(X_7)$	0.4721	0.0871	0.385	0.2862
8. Cropping intensity				
(X_8)	0.0260	0.0511	-0.0251	-0.0264
9. Land under				
bamboo (X ₉)	0.5329	-0.1238	0.6567	0.3558
10. Material				
possessed (X ₁₀)	0.0152	-0.0907	0.1059	0.0775
11. Annual income				
before bamboo (X ₁₁)	0.2704	-0.0016	0.272	0.1708
12. Mass media				
exposure (X ₁₂)	-0.1876	0.0233	-0.2109	-0.1648
13. Number of				
rhizome planted				
(X_{13})	-0.1239	-0.0402	-0.0819	-0.1245
14. Number of				
rhizome grown				
to the fullest (X_{14})	-0.1210	0.0116	-0.0445	-0.0516
15.				
Training				
received(X ₁₅)	-0.0396	0.0049	-0.0445	-0.0516
16. Energy	0. 7017			0.0015
consumption (X_{16})	0.5013	0.1765	0.3248	0.3042
17. Distance to				
$market(X_{17})$	0.1167	-0.0006	0.1173	0.0597

18. Cost incurred in				
bamboo				
$cultivation(X_{18})$	0.5282	0.2474	0.2808	0.3421
19. Mode of				
selling(X ₁₉)	0.1136	0.0153	0.0983	0.0781

Residual effect = 0.0754

Table-6.20 presents the path analysis for decomposing the total effect(r) of the antecedent variables into direct, indirect and residual effect on the consequent variable, Mandays generation from Bamboo enterprise (Y_4).

REVELATION

It has been found that the variable family $size(X_3)$ has exerted the highest direct effect to characterize the Mandays generation from Bamboo enterprise. It is well discernable that family size presents both stress and motivation to go for labour intensive work in individual to elicit a better choice out of basket of commodity to support the family and earn better social status for the family.

The variable land under $bamboo(X_9)$ has also been exerted the highest indirect effect to imply that this variable has got highest associational property to characterize the productivity of bamboo.

Again, it has been found that the variable family $size(X_3)$ has routed highest indirect effect of all the variables to ultimately functionalize the performance of Mandays generation from Bamboo enterprise. This indicates the behavioural as well as operational viscosity of this variable productivity of bamboo. The value of the residual effect indicates that with

the combination of these 19 variables, more than 98 per cent variance of Mandays generation from Bamboo enterprise (Y_4) has been explained.

RESIDUAL EFFECT = 0.074

Fig. 6.14: Paradigm of path analysis of causal variable Mandays Generated from Bamboo enterprise (Y₄) vs. other 19 exogenous variables.

Table 6.16: PATH ANALYSIS: Wages generated from Bambooenterprise (Y5) and other 19 exogenous variables.

			TOTAL		HIGHES
VA	RIABLE	TOTAL	DIRECT	TOTAL	Τ
		EFFECT(EFFECT	INDIRE	INDIRE
		r)	(TDE)	СТ	СТ
				EFECT(EFFECT
				r-TDE)	VIA

1. $Age(X_1)$	-0.0072	0.0674	-0.0746	-0.0877
2. Education(X_2)	-0.0298	0.0089	-0.0387	-0.0540
3. Family size(X ₃)	-0.9297	-0.7723	-0.1574	-0.7723
4. Average cost of farm				
implements				
when purchased (X_4)	-0.1476	-0.0618	-0.0858	-0.0896
5. Average cost of farm				
implements at $present(X_5)$	-0.0446	0.0241	-0.0687	-0.0672
6. Homestead land (X_6)	0.1693	0.0636	0.1057	0.0691
7. Land under agricultural				
$crop(X_7)$	0.4769	0.0909	0.3803	0.2880
8. Cropping intensity (X_8)	0.0235	0.0470	-0.0235	0.0470
9. Land under bamboo				
(X ₉)	0.5328	-0.1142	0.647	0.3581
10. Material possessed				
(X_{10})	0.0204	-0.0799	0.1003	-0.0799
11. Annual income before				
bamboo (X ₁₁)	0.2710	-0.0014	0.2724	0.1718
12. Mass media exposure				
(X_{12})	-0.1863	0.0235	-0.2098	-0.1659
13. Number of rhizome				
planted (X ₁₃)	-0.1242	-0.0395	-0.0847	-0.1253
14. Number of rhizome				
grown to the fullest (X_{14})	-0.1212	0.0096	-0.1308	-0.1241
15. Training received(X_{15})	-0.0416	0.0018	-0.0434	-0.052
16. Energy consumption				
(X ₁₆)	0.4973	0.1643	0.333	0.3062
17. Distance to				
market(X ₁₇)	0.1219	0.0050	0.1169	0.0601
18. Cost incurred in				
bamboo cultivation(X ₁₈)	0.5277	0.2349	0.2928	0.3443
19. Mode of selling(X_{19})	0.1179	0.0196	0.0983	0.0786
Residual effect=0.0746				

BAMBOO I	N NORTH-EAST INDIA: THE ECOLOGY, ECONOMY	AND
CULTURE	ISSN: 978-93-85822-00-1	142

Table-6.21 presents the path analysis for decomposing the total effect(r) of the antecedent variables into direct, indirect and residual effect on the consequent variable, Wages generation from Bamboo enterprise (Y_5).

REVELATION: It has been found that the variable family size(X_3) has exerted the highest direct effect to characterize the wages generation from bamboo enterprise. It is well discernable that family size presents both stress and motivation to go for labour intensive work in individual to elicit a better choice out of basket of commodity to support the family and earn better social status for the family.

The variable land under $bamboo(X_9)$ has also been exerted the highest indirect effect to imply that this variable has got highest associational property to characterize the productivity of bamboo.

Again, it has been found that the variable family $size(X_3)$ has routed highest indirect effect of all the variables to ultimately functionalize the performance of wage generation from bamboo enterprise. This indicates the behavioural as well as operational viscosity of this variable productivity of bamboo. The value of the residual effect indicates that with the combination of these 19 variables, more than 98 per cent variance of wages generation from (Y₅) has been explained.

Fig. 6.15: Paradigm of path analysis: causal variable Wages genereted from Bamboo enterprise (Y₅) vs. other 19 exogenous variables.

Table 6.17	: Factor analysis: factor loading	Congloi and ren	neration aming of	of varia factors.	bles based on
		1			1

_

		Facto	Varianc		
		r	e	C.V.	Factor
Factors	Variables	loadin			
		g	(%)	(%)	Renaming
					Family
Factor-1	Family size (X ₃)	-0.564	15.96	15.96	Resource
	Land under				Entrepreneursh
	agricultural	-0.557			ip
	crop (X ₇)				
	Area under				
	bamboo(X ₉)	0.849			
	Energy				
	consumption				
	(X_{16})				
	Mode of	0.154			

	selling(X ₁₉)				
	Mass media				
Factor-2	exposure	-0.301	12.761	28.677	Input Media
	(X ₁₂)				Interaction
	Number of rhizome				
	planted (X_{13})	0.716			
	Number of rhizome				
	grew to the	0.743			
	fullest(X_{14})				
					Home and
Factor-3	Age (X_1)	0.697	11.017	39.694	Human
					Resource
	Education (X ₂)	-0.670			Support
	Homestead land				
	(X_6)	0.414			
	Material				Resource
Factor-4	possessed(X ₁₀)	0.556	7.541	56.052	Status
	Annual income				
	before	-0.552			
	bamboo (X ₁₁)				
	Training				
Factor-5	received(X ₁₅)	0.559	6.971	63.023	
Factor-6	Distance to market	0.498	5.844	68.867	
	(X ₁₇)				
	Average cost of				
Factor-7	farm	0.668	5.353	68.867	
	implements at				
	present(X ₅)				
	Average cost of				Input
Factor-8	farm	0.620	4.860	79.081	Enterprise
	implements when				
	purchased(X ₄)				
	Mode of	0.532			
	selling(X ₁₉)				
	Cropping				
Factor-9	$intensity(X_8)$	0.638	4.746	83.827	

Fig. 6.16: Factor analysis: Conglomeration of variables based on factor loading and renaming of factors.

Table-6.22 presents the factor analysis to estimate the degree of conglomeration of apparently different exogenous variables, based on Eigen values into some discernable factor. It has been found from the table that **Factor-1** has accommodated the following variables

Family size (X₃)

Land under agricultural crop (X_7) Area under bamboo (X_9)

Energy consumption (X_{16}) Mode of selling (X_{19})

And this factor can be renamed as Family Resource entrepreneurship. This has contributed 15.96% of variance.

Factor-2 has accommodated the following variables

Mass media exposure (X_{12})

Number of rhizome planted (X_{13})

Number of rhizome grew to the fullest(X_{14})

And this factor can be renamed as Input media interaction. This has contributed 12.761% of variance.

Factor-3 has accommodated the following variables

Age (X_1) Education (X_2)

Homestead land (X_6)

And this factor can be renamed as Home and human resource support. This has contributed 11.017% of variance.

Factor-4 has accommodated the following variables

Material possessed(X_{10})

Annual income before bamboo (X_{11})

And this factor can be renamed as Resource status. This has contributed 4.86% of variance.

Factor-8 has accommodated the following variables

Average cost of farm implements when $purchased(X_4)$

Mode of selling(X_{19})

And this factor can be renamed as Input enterprise. This has contributed 7.541% of variance.

Since the rest of the factor have accommodated solitary variable in each of the cases, no renaming is required.

The cumulative variance is 87% which is fairly enough to explain any kind of interpretative variation as well as interaction amongst and between the whole plethora of variable including both dependent and independent variables.

Fig. 6.17: Scree Plot

A Scree plot is presents the level of conglomeration of variables based on factor loading. The graph shows that after reaching component 11 the Eigen values start plateuing and the number of components after this point has been proved to be insignificant.

```
BAMBOO IN NORTH-EAST INDIA: THE ECOLOGY, ECONOMY AND
CULTURE ISSN: 978-93-85822-00-1 148
```


Fig. 6.18: CANONICAL CORRELATION ANALYSIS:

REVEALATION

Canonical covariate analysis has been carried out to depict the clandestine interactive and combination between two sets of variables i.e., left and right side sets of variables. This analysis has got tremendous strategic importance.

The model depicts that from the left side (Set-I) the following consequent variables viz;

 Y_1 = Family income from bamboo enterprise.

Y₃= Productivity of bamboo.

Have got clear choices to select the following exogenous variable i.e. from right set of variables viz,

X₁=Age

X₃ =Family size

 X_4 = Average cost of farm implements when purchased

 X_5 = Average cost of farm implements at present

X₉= Land under bamboo.

 X_{12} = Mass media exposure.

 X_{13} = Number of rhizome planted.

 X_{14} = Number of rhizome grown to the fullest.

 X_{15} = Training received.

 X_{18} = Cost incurred in bamboo cultivation.

From the cross loading of the canonical covariates, it can be inferred that, while the entire Y set of variable are in interactive relationship, the two left side variables i.e. Family income from bamboo enterprise(Y_1) and Productivity of bamboo(Y_3) have respondent and dovetailed these X set of variable.

So, it can be concluded that the increase of income through increase of productivity needs a collective support from the causal variable like $Age(X_1)$, Family size (X₃), Average cost of farm implements when purchased (X₄)

Average cost of farm implements at present(X_5), Land under bamboo (X_9), Mass media exposure(X_{12}), Number of rhizome planted(X_{13}), Number of rhizome grown to the fullest (X_{14}), Training received(X_{15}), Cost incurred in bamboo cultivation(X_{18}). So the left set of variable ($Y_1 \& Y_3$) combinedly can be branded as *Productive Economy Of Bamboo Enterprise* with a clandestine support from *Resource-Investment Factor*.

In case of Set-II From the cross loading of the canonical covariates, it can be inferred that, while the entire Y set of variable are in interactive relationship, the three left side variables i.e. Family income from agricultural enterprise(Y₂),Mandays generated from bamboo enterprise(Y₄) and Wages generated from bamboo enterprise(Y₅) have respondent and dovetailed these X set of variable.

So, it can be concluded that the increase of income through increase of productivity needs a collective support from the causal variable like Education(X_2), Homestead land (X_6), Land under agricultural crop (X_7), Cropping intensity(X_8), Material possessed (X_{10}), Annual income before bamboo(X_{11}), Energy consumption(X_{16}), Distance to market (X_{17}), Mode of selling(X_{19}). So the left set of variable (Y_2 , Y_4 & Y_5) combinedly can be branded as *Farm Family Economy* with a clandestine support from right side variable which also can be branded combinedly as *Management – Communication Variable*.